澳门新萄京8522-娱乐手机版游戏网址


超声波磁粉探伤仪应用,牛奶智能分析仪

在本标准中所规定的曝露限值并不根据长期曝露的潜在影响,我国变频器行业的竞争将日趋激烈

因此在选择二瓦计或者三瓦计法进行三相功率测试时,测量显示电压、电流、功率等的基波值和各次谐波值

发布时间:15-08-31 17:23分类:技术文章 标签:功率分析仪,电磁 一、概述
在电气测量领域,功率分析仪的电磁兼容性显得尤为重要,随着现场测试环境的日益复杂,特别是变频电源的普及,现场的电磁干扰现象越来越严重,导致某些电磁兼容性不好的功率分析仪不能准确测量甚至无法正常运行。这是由于变频电源中IGBT等电子开关的频繁开合,产生大量的高次谐波,这些高次谐波通过连接导线的传导或者空气耦合的方式对设备产生干扰。既然功率分析仪都无法正常运行,那么保证复杂电磁环境下的高精度测量从何谈起呢?由此看出,变频测量电磁环境的特殊性,对功率分析仪的电磁兼容性能提出了更高的要求。
二、提升功率分析仪兼容性措施
1.截断干扰源对干扰源采取电磁屏蔽措施(如变频器),对于功率分析仪来讲,这是一种间接的削弱电磁干扰的方法,通过屏蔽、滤波等措施,削减干扰源对外界产生的电磁干扰强度,对于无意发射干扰源来说,操作起来从理论上说是可行的,但是对于有意发射干扰源来说,比如雷达、导航等无线电设备来说,是不可能实现的。因此采用截断干扰源的方式来避免其对周围环境设备产生超过限值的电磁骚扰,实际实施起来也要分情况考虑,且操作难度较大,不可控。那么对于置身于复杂电磁环境中的功率分析仪来说,不可避免的会通过空气耦合周围环境中存在的电磁波能量,如何减少分析仪所受到的辐射干扰呢?一是通过机箱屏蔽、滤波、接地等措施,降低外界磁场耦合到功率分析仪主要工作电路,保证功率分析仪的正常工作。二是通过相关电路设计,PCB工艺等措施,增强功率分析仪抗骚扰能力。而一般的功率分析仪一般采用直测或者一次互感器变换成小信号后,通过电缆线连接至分析仪端,这样,干扰信号势必会通过信号导线传输至功率分析仪,影响功率分析仪的测量精度与正常工作,而这样的方式,也是绝大部分功率分析仪普遍采用的信号传输方式,这也*是为何不同的功率分析仪在同样的变频测量场合,会测量出不同的结果。电磁兼容性一般包含两个方面,EMI和EMS,即电磁干扰和电磁耐受两方面。一台电磁兼容性好的设备,*要求设备在正常运行的过程中对所在的环境产生的电磁干扰不能超过一定限度,也要求设备对其运行环境中的电磁干扰有一定的抗扰度。干扰源包含自然干扰源和人为干扰源,我们主要关注的是人为干扰源,比如一些能发射电磁能量的装置,如广播、雷达、电机、变频器等设备。
2.辐射干扰
辐射干扰是通过介质以电磁波的形式传播,干扰能量按电磁场的规律向周围空间发射。
3.传导干扰
传导干扰的产生一般是在干扰源与敏感器之间有完整的电路连接,干扰信号沿着这个连接电路传递到敏感器。

发布时间:15-08-28 10:33分类:技术文章 标签:二瓦计,三瓦计 一、概述
在三相电路的功率测量中,主要测量方法有二瓦计法和三瓦计法两种方法。对于不同的接线方式场合,应选择恰当的功率测量方式,才能得到准确的功率参数。但是由于部分使用者对于这两种方法适用的场合不够清晰,因此在选择二瓦计或者三瓦计法进行三相功率测试时,极易造成混淆,从而导致选择了错误的测量方法。
那么究竟在什么样的情况下使用两瓦计法,什么样的情况下采用三瓦计法进行三相功率的测量呢?本文从三相电路功率测量的原理角度下分析这两种方法的异同以及分别适用的场合。
二、二瓦计法 1、测量原理
二瓦计法的理论依据是基尔霍夫电流定律,即:在集总电路中,任何时刻,对任意结点,所有流入流出结点的支路电流的代数和恒等于零。也*是说,两根火线的流入电流等于第三根火线的流出电流,或者说,三根火线的电流的矢量和等于零,即:
  ia+ib+ic=0  (1)   假设三相负载的中线为N,依据电压的定义:
  uab=uan-ubn,ucb=ucn-ubn  (2) 三 相瞬时功率:
  p=uan*ia+ubn*ib+ucn*ic,  (3)
  将式(1)和式(2)代入式(3),得:
  p=uan*ia+(-ubn*ia+ubn*ia)+ubn*ib+ucn*ic
  =uab*ia+ubn(ia+ib)+ucn*ic   =uab*ia+ubn(-ic)+ucn*ic
  =uab*ia+ucb*ic。
有功功率等于瞬时功率在一个周期内求积分再求平均,得到:   P=P1+P2  
P为三相电路有功功率的总和,P1为uab*ia在一个周期内的积分的平均值,P2为ucb*ic在一个周期内的平均值。在正弦稳态电路中:
  P=UAB*IA*cosφAB+UCB*IC*cosφCB   即:P1=UAB*IA*cosφAB
P2=UCB*IC*cosφCB
式中,UAB、IA、UCB、IC均为正弦电压电流的有效值,φAB为UAB和IA的相位差,φCB为UCB和IC的相位差。
从变换的公式中可以看出,采用这种方法进行三相总功率测量时,只需要测量两个电压和两个电流,这*是二瓦计法的推导原理及由来。
二瓦计法测量时,三相电路总功率等于两块功率表的功率之和,每块功率表测量的功率本身无物理意义。
2、接线方法 二瓦计法接线示意图如下所示(以测量UabIa,UcbIc为例):
图1.二瓦计法功率表接线示意图
图1中,单相功率表或三相功率表的某一相W1测量的是P1=UAB*IA*cosφAB,W2测量的是P2=UCB*IC*cosφCB。则三相电路总功率为:P=P1+P2。
3、适用场合
由于二瓦计法的理论依据是基尔霍夫电流定律,适用于在三相回路中只有三个电流存在的场合,如:
1、 三相三线制接法中线不引出(只能采用两瓦计法); 2、
三相三线制接法中线引出但不与地线或试验电源相连的场合,与是否三相平衡无关。
三、三瓦计法 1、测量原理
三瓦计法需要将中性点做为电压的参考点,分别测量出三相负载的相电压,相电流,那么三相电路的总功率为三个单相电路的功率之和,每块功率表测量的功率*是单相功率。
如果以瞬时值表示的话,即:  pa=ua*ia,pb=ub*ib,pc=uc*ic,
那么三相瞬时功率:  p=pa+pb+pc, 则三相总有功功率为:  P=PA+PB+PC
在正弦稳态电路中,  PA=UA*IA*cosφA  PB=UB*IB*cosφB
 PC=UC*IC*cosφC
 其中φA、φB、φC分别为UA与IA、UB与IB、UC与IC的相位差角。 2、接线方法
三瓦计法测量接线示意图如下所示: 三瓦计法功率表接线示意图 3、适用场合
三瓦计法由于需要采用中性点作为电压的参考点,因此适用于如下场合选用: 1、
三相三线制中性线引出,但中性线不与电源或地线连接的场合; 2、
三相四线制,由于无法判断三相负载是否平衡或是否在中性线上有零序电流产生,只能采用三瓦计法;
四、误区 1、误区一 二瓦计法只适合于三相对称电路的功率测量。
这种说法显然是不正确的。
首*,二瓦计法的证明中,只有ia+ib+ic=0的假设,并没有要求三相对称。
其次,如果三相负载完全对称,那么只需要一个功率表(比如PA)即可得出三相总功率,即P=3PA,二瓦计法也失去了意义。
2、误区二 用二瓦计法测量三相四线制的总功率。
由于三相四线制有四个电流(ia、ib、ic和in),而二瓦计法依据的是基尔霍夫电流定律,在三相回路中,三相电流矢量之和必须等于零。但是在三相四线制回路中,会产生零序电流分量,这*使得ia+ib+ic≠0,因此,二瓦计法不适用三相四线制的总功率测量,三相四线制系统应采用三瓦计法。

发布时间:15-08-27 17:34分类:技术文章 标签:变频器
交流变频技术已经被范围内公认为当今*为理想的电气传动方案,它优异的调速性能、显著的节能效果、广泛的应用范围是传统调速方式无法比拟的。然而由于常用的变频器主电路一般为交-直-交电路组成,输入电路的波形为不规则的矩形波,而经过PWM调制的输出信号含有正弦波的基波和大量的各次谐波。因此,在变频器的测量在仪器的选择上与传统手段有别。那么变频器测量时,应当对变频器进行哪些方面的测量呢?而变频器测量时到底选择什么设备才能够使得测量试验更加高效而准确呢?
一 、变频器测量试验的测量内容
变频器的电气试验主要是测量变频器的输入、输出值,其中:
输入值包括额定输入电压、额定输入电流、输入功率、额定容量、有功功率、功率因数、相数、输入各次谐波、输入总失真度。
输出值包括*大额定输出电压、额定连续电流、额定功率、频率范围、过载能力(过载能力适用于额定的转速范围内)、输出各次谐波、输出总失真度、相数、输出相序。
以及在设计的频率范围内,各个频率下的效率。 二 、变频器测量试验的测量仪表
1、动铁式仪表
这种仪表测量的是有效值,它的值由固定线圈磁场与其内可动铁之间相互作用的电磁力所确定的偏转角度而确定。读数误差由动铁的磁饱和以及谐波对线圈内电感的影响引起。仪表精度一般是0.5级。
2、整流式仪表
交流电流经整流然后作用于动圈式直流表,按交流电流的有效值确定刻度,其有效值是由整流平均值乘以波形系数求出的。市场上可买到的该种仪表基本是用于测量正弦电流的,而正弦电流的波形系数是1/sqrt(2)=1.11,因此在测量非正弦电流的波形时,应该注意波形系数。典型的仪表精度是1.0级。
3、热电式仪表
温升与测量电流产生的热量成正比,这个温升被热电偶转换为直流电动力,其电流有效值由直流毫伏表指示。
4、电动式仪表
电流指示值具有均匀的刻度,其指针偏转角度等于两个线圈间的力,也*是它的驱动转矩(Im×IF×dT/dθ)电流IF是与负载串联的固定线圈内的电流;电流Im正比于动圈中的电压。典型精度为0.5级。
5、谐波分析仪/功率分析仪
输入信号经高速A/D采样,经过数字运算,将数据存储于缓冲存储器内,结果显示在屏幕上。可测量电压、电流、有功功率、无功功率、功率因数等,以及进行谐波分析,测量显示电压、电流、功率等的基波值和各次谐波值,并显示其曲线。
三、变频器测量试验仪表的选择
基于对变频器工作原理的认识,我们可以得知:一些传统的仪表一般不适合变频器的测量,用于变频器测量的仪表要求有较高的采样频率和较宽的带宽,并且要有较强的抗干扰能力,在瞬态测量中要具有较高的测量精度。

相关文章

No Comments, Be The First!
近期评论
    功能
    网站地图xml地图