澳门新萄京8522-娱乐手机版游戏网址


铯原子喷泉基准钟的开发和应用,  二、消费品制造业利润增速加快  11月份

以对臭氧污染的管控对此,使用方经常提出向企业需要进行溯源以确保量值准确性的需求

成功研发出满足深海极端条件应用的原位荧光传感器,他们进一步建立了不同力学性能与结构再取向之间的定量关系

生物体是由材料组成的,力学性能是材料的基本性能指标。不断提高力学性能使其更好地满足实际应用需求是天然与人造材料发展的共同目标,同时也是它们面临的共性难题。在长期的自然选择与进化过程中,天然生物材料的组织结构与力学性能均得到了持续优化,使得生物体实现了对其生存环境的适应,甚至达到巧夺天工的效果。大自然不仅是天才的材料设计师,而且是人类的良师。从材料学与力学的角度揭示自然界中典型生物材料的组织结构以及赋予其优异性能的关键机理,提炼天然与人造材料共性的优化设计原则,能够为高性能人造材料的开发提供宝贵的启示。  近期,中国科学院金属研究所材料疲劳与断裂实验室项目研究员刘增乾和研究员张哲峰与美国加州大学伯克利分校、加州大学河滨分校、加州大学圣地亚哥分校、普渡大学等单位开展合作,在前期对多种典型生物材料的组织结构、力学性能与损伤机制系统研究的基础上,提炼出了若干天然与人造材料性能优化设计的共性原则,主要包括:梯度结构取向效应、原位结构再取向效应和多级“缝合”界面效应。他们揭示了以上设计原则的内在力学原理,并进一步提出了一系列新的力学理论,为新型高性能仿生材料的设计与研发提供了理论指导。  梯度结构取向效应:针对不同生物材料宏观外形与微观组织结构的取向变化,他们首次提出了新型材料组织结构取向梯度(Gradient
Structural
Orientation)的概念与设计原则,从材料力学的角度建立了梯度组织结构取向与刚度、强度、断裂韧性之间的系列定量关系,例如杨氏模量与取向角度之间具有如下定量关系。  在此基础上,他们阐明了梯度结构取向效应实现性能优化的力学原理,提炼了改善材料抵抗接触损伤能力的仿生设计新思路。研究表明:随着微观组织结构取向逐渐偏离所受外力的方向,材料的刚度和强度从表面到内部逐渐降低,而断裂韧性随着裂纹越来越偏离其容易扩展的I型应力面而逐渐增大,从而达到了表面刚强而内部柔韧的效果,有效减轻了接触应力对材料造成的损伤。  原位结构再取向效应:针对天然生物材料的各向异性组织结构,他们首次提出了生物材料通过原位结构再取向(Adaptive
Structural
Reorientation)实现力学性能全面优化的策略与设计原则。研究发现:自然界中的木材、鱼鳞、骨骼等不同生物材料的微观组织结构在拉伸条件下逐渐偏向外力,而在压缩条件下逐渐偏离外力。这种结构再取向效应不仅有利于改善材料的变形能力,而且能够带来不同力学性能的全面同步提升。在拉伸条件下,增强相与应力轴之间夹角的减小有利于提高材料的刚度和强度,同时裂纹的扩展路径逐渐偏离其容易扩展的最大正应力平面,使得材料的断裂韧性得以同步增强;而在压缩条件下,增强相所受的轴向分应力随着取向逐渐偏离外力而降低,并且其所受的横向束缚作用随之增强,这不仅有利于提高材料抵抗微观局部失稳与整体结构失稳的力学稳定性,而且赋予材料优异的劈裂韧性。他们进一步建立了不同力学性能与结构再取向之间的定量关系,例如,材料的劈裂韧性与压缩应变之间具有如下定量关系。  因此,生物材料可以利用原位结构再取向效应全面改善其在不同应力条件下的刚度、强度、力学稳定性与断裂韧性,从而克服这些性能在传统材料设计中常见的相互矛盾的制约关系。  多级“缝合”界面效应:针对颅骨、鱼鳞、穿山甲鳞片等不同生物材料中广泛存在的微观取向不断变化的锯齿形多级“缝合”界面结构(Hierarchical
Suture
Interface),他们从断裂力学的角度建立了评判裂纹与界面相互作用方式以及裂纹扩展路径的基本准则,首次提出多级“缝合”结构能够通过促进裂纹穿过界面而对界面起到增韧作用的新观点,并且揭示了“缝合”结构的微观几何形状和结构级数对界面韧性的影响与作用机理。研究发现:多级“缝合”结构能够促使裂纹与界面之间的夹角偏离其初始入射角度,并且提高裂纹沿界面扩展路径的复杂崎岖程度,从而显著降低驱使裂纹持续沿界面偏转的有效应力强度因子。例如:裂纹尖端促使裂纹穿过界面与沿界面偏转的有效应力强度因子之比为:  多级“缝合”结构使得裂纹更加倾向于穿过界面而不是进入界面扩展,因此对界面起到有效的增韧作用,并且界面的增韧效果会随着锯齿的尖锐程度以及结构级数的增加而显著增强。他们进一步提出了特征临界应力强度因子比值的概念,该参数能够定量反映多级“缝合”结构对界面的增韧效果以及界面的几何形状和结构级数的影响。

本规范适用于温度范围为(-80~300)℃的以液体为介质提供恒温条件的试验设备的温度性能的校准,其他类似的设备也可参照本规范进行校准。  引用文件  《JJF1030-2010
恒温槽技术性能测试规范》、《GB/T
5170.2-2017环境试验设备检验方法第2部分:温度试验设备》、《GB∕T
5170.1-2016 电工电子产品环境试验设备检验方法第1部分:总则》、《GB/T
28850-2012 恒温槽与恒温循环装置高温恒温槽》、《GB/T 26808-2011
恒温槽与恒温循环装置低温恒温槽》   液体恒温试验设备是实验室用于样品加热、冷却或其他温度实验的设备,一般由槽体、加热(制冷)器和温控系统三部分组成。  其工作原理为:温度传感器将感受到的温度变化转换为电信号,经过集成信号处理后,输出控制信号,有效地控制电热(制冷)器的输出功率,使槽体内的液体介质保持恒温。槽体一般为长方体或圆柱体。设备所使用的液体介质一般根据使用的温度范围和使用需要来选择,常见的液体介质有水、乙醇、硅油、防冻液等。  计量特性  液体恒温试验设备的温度偏差、温度均匀度及温度波动度应符合产品说明书的技术要求,或符合用户技术需要。  校准项目  液体恒温试验设备的校准项目为温度偏差、温度均匀度和温度波动度。  温度的校准  按照7.3.2规定布放温度传感器,确认液位正常后将液体恒温试验设备设定到校准温度,开启运行,待其达到设定温度并处于稳定状态30min后开始记录各测量点温度,每2分钟采样一次,30min内共记录16组数据,或根据设备运行状况和用户校准需求确定时间间隔和数据记录次数,并在原始记录和校准证书中进行说明。  温度均匀度  液体恒温试验设备在稳定状态下,工作空间各测量点30min内(每2min采样一次)每次测量中实测最高温度与最低温度之差的算术平均值。

由中科院大连化物所关亚风研究员、耿旭辉副研究员带领的微型分析仪器研究组与中科院深海所共同研制的我国首台4500米级深海示踪剂原位荧光传感器工程样机于2月18日海试成功,大连化物所于近日收到设备参航证书。  在深海勇士号/探索一号西南/中印度洋TS10-03科考航次中,该工程样机搭载“深海勇士”号载人潜水器SY145潜次进行海底试验,最大试验深度为2450米。该仪器是我国首台应用于深海原位探测的荧光传感器,它的成功研发将提升我国对深海中目标流的轮廓和分布范围,包括对冷泉、热液羽流扩散的探测能力,具有重要科学价值。  基于大连化物所微型分析仪器研究组在高灵敏荧光检测器多年的学术积累,该仪器进一步提高了检测灵敏度,检测灵敏度与国际上水平相当。另外,在深海条件下,仪器面临高压(约245个大气压)等极端条件,这对传感器的性能提出了苛刻的要求。该团队与中科院深海所合作,通过科学设计,反复验证,成功研发出满足深海极端条件应用的原位荧光传感器。  该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,大连化物所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器研发。 
标签: 传感器

相关文章

No Comments, Be The First!
近期评论
    功能
    网站地图xml地图