澳门新萄京8522-娱乐手机版游戏网址


称取一定量样品至125ml三角瓶中,高压变频器后端主要拖动风机、水泵类负载

也不包括用电设备对电网电能质量的影响和污染,即福尔马肼浊度单位也

选择传感器通道以及保存为U盘数据等功能,低频金属探测器有两个截然不同的线圈

发布时间:15-06-11 17:03分类:技术文章 标签:CO2气体传感器,红外气体
CO2浓度的检测方法大致分化学方法和物理方法。CO2浓度检测方法有滴定法、热催化法、气敏法、电化学法,这些属于化学方法,这些方法普遍存在价格贵,普适性差等问题,且测量精度较低。而物理的方法有超声波法、气相色谱法以及众多借助于光学来实现检测的方法。也有像光声光谱法这种化学和物理结合的方法。吸收光谱法的依据是不同化学结构的气体分子对不同波长的辐射的吸收程度不同,CO2气体分子对特定波长的红外光有强烈的吸收。
目前各种检测用的CO2传感器主要有固体电解质式、钛酸钡复合氧化物电容式、电导变化型厚膜式等,这些传感器存在对气体的选择性差、易出现误报、需要频繁校准、使用寿命较短等不足。而红外吸收型CO2传感器具有测量范围宽、灵敏度高、响应时间快、选择性好、抗干扰能力强等特点。
1 传感原理
红外吸收型CO2气体传感器是基于气体的吸收光谱随物质的不同而存在差异的原理制成的。不同气体分子化学结构不同,对不同波长的红外辐射的吸收程度*不同,因此,不同波长的红外辐射依次照射到样品物质时,某些波长的辐射能被样品物质选择吸收而变弱,产生红外吸收光谱,故当知道某种物质的红外吸收光谱时,便能从中获得该物质在红外区的吸收峰。
同一种物质不同浓度时,在同一吸收峰位置有不同的吸收强度,吸收强度与浓度成正比关系。因此通过检测气体对光的波长和强度的影响,便可以确定气体的浓度。
根据比尔朗伯定律,输出光发光强度I、输入光发光强度I0和气体浓度c之间的关系为
I=I0exp(-αmLc) (1)
式中:αm为摩尔分子吸收系数;c为待测气体浓度;L为光和气体的作用长度(传感长度)。对式(1)进行变换,得:
2 仪器设计框图
前端传感器输出的数字信号,以串口方式与STM32进行通讯,此仪器设计三通道采集,利用继电器电路对传感器通道进行选择,STM32将浓度值显示在液晶屏上,液晶屏带有触摸功能,通过编写液晶显示界面,调用相关按键程序,选择传感器通道以及保存为U盘数据等功能。框图如图1所示。
图1仪器设计框图 3 传感器选择
选择了DYNAMENT公司的premier二氧化碳传感器,此传感器运用非色散红外原理检测气体,它包括长寿命钨红外光源、供扩散气体进入的光通道、一对经温度补偿的红外原理热电交换检测元件、半导体温度传感器和处理红外热电交换检测器信号的电子电路,使用方便快捷,如图2为二氧化碳传感器外形封装图。
图2二氧化碳传感器外形封装 4 硬件电路设计
本仪器设计3个通道的二氧化碳传感器采集,通过3个继电器来选择传感器的通断。如图3为继电器控制电路。
图3继电器控制电路
使用低功耗单片机STM32F103RE,内核为:ARM32-bitCortex-M3
CPU,尺寸为:10mmx10
mm,带有4个串口,在本仪器设计中,用到3个串口,一个与传感器进行通讯,一个与液晶进行通讯,一个与USB存储模块通讯。如图4为控制器*小系统。
STM32STM32 图4 STM32STM32
选择迪文科技有限公司的液晶,型号为DMT32240C035_02W,基本参数为:3.5英寸,M100内核,65K色串口液晶人机界面。此款液晶带有触摸功能,系统设计时,不用添加按键电路,只需编写液晶按键程序*能实现按键功能,简单的实现参数的设置,数据保存,档位切换等功能。
5 软件设计
仪器开机后进入液晶程序界面,选择传感器通道,进入数据采集程序,将当前二氧化碳浓度值显示于液晶屏上,点击液晶显示界面上的保存按钮,保存当前时间的二氧化碳浓度值。仪器软件总体设计流程如图5所示。
图5软件流程图 6 室内实验
利用组装的便携式二氧化碳监测仪进行了室内的测试实验,如表1为3个通道对同一环境下,二氧化碳浓度的测试数据,每个通道测试10次。从测试数据上看每个通道测试数据较为稳定。且与空气中二氧化碳碳理论在浓度值接近。
7 总结
该仪器的开发主要是为二氧化碳储存项目服务,对二氧化碳泄露进行监测,针对泄露的二氧化碳浓度值范围不定的情况,仪器设计了三个通道,并通过实验测试了三个通道数据采集情况,测试结果说明,仪器运行正常。

发布时间:15-07-10 16:23分类:技术文章 标签:金属探测器
金属探测器是用于探测金属的电子仪器,目前主要有三大类:电磁感应型,X射线检测型,微波检测型。*常见和实用的是电磁感应型的,其原理是利用电磁感应的原理,利用有交流电通过的线圈,产生迅速变化的磁场。这个磁场能在金属物体内部能感生涡电流。涡电流又会产生磁场,反过来影响原来的磁场,从而引发探测器的反应,如发出鸣声等。
金属探测器的作用场景
金属探测器常用于军事领域,如扫雷等任务。但其不仅能探测军火及金属器械,还可以探测到硬币、锁匙及其他小型金属物品。因此在机场等场所会用来检查是否有妨害安全的金属物品,如刀械等被夹藏带入。
另外,金属探测器现今也应用于食品、医药、塑料制造等多个行业,检测产品中的金属,目的提高产品纯度,防止杂物混入。
关于电磁感应型金属探测器原理的深入探讨
一般采用的是低频探测技术(VLF)也称感应平衡,可能是当今*为常用的一种探测技术。低频金属探测器有两个截然不同的线圈:
发射线圈——外环线圈。里面是一个由导线绕成的线圈。设备沿导线交替变换方向发出电流,每秒钟变换数千次。每秒钟电流方向变换的次数*形成了探测器的频率。
接收线圈——内环线圈,由另一由导线绕成的线圈组成。这一线圈能起到天线的作用,用来收集并放大地下目标物发出的电磁波的频率。
流经发射线圈的电流会产生一个电磁场,*如同电动机也会产生电磁场一样。磁场的极性垂直于线圈所在平面。每当电流改变方向,磁场的极性都会随之改变。这意味着,如果线圈平行于地面,那么磁场的方向会不断地交替变化,一会儿垂直于地面向下,一会儿又垂直于地面向上。
随着磁场方向在地下反复变化,它会与所遇的任何导体目标物发生作用,导致目标物自身也会产生微弱的磁场。目标物磁场的极性同发射线圈磁场的极性恰好相反。如果发射线圈产生的磁场方向垂直地面向下,则目标物磁场*垂直于地面向上。
接收线圈能完全屏蔽发射线圈产生的磁场。但它不会屏蔽从地下目标物传来的磁场。这样一来,当接收线圈位于正在发射磁场的目标物上方时,线圈上*会产生一个微弱的电流。这一电流振荡的频率与目标物磁场的频率相同。接收线圈会放大这一频率并将其传送到金属探测器的控制台,控制台上的元件继而对这一信号加以分析。
金属探测器根据目标物产生的磁场的强度,能近似地判定目标物埋藏的深度。目标物埋藏得越浅,接收线圈收集到的磁场强度*越大,产生的电流也越大。目标物埋藏得越深,磁场*越弱。如果超过了一定的深度,目标物磁场在地表处的强度过于微弱,*不能被接收线圈感测到。
VLF金属探测器如何分辨不同类型的金属?这是利用一种称为相移的现象实现的。相移是指发射线圈频率与目标物频率之间的时间差。之所以会形成这一差异,有以下两方面的因素:
电感——易于导电(感应性的)但对于电流变化反应迟缓的导体。您可以将高电感物体理解为一条很深的河流:如果改变河流中的水流量,要过一段时间才能看到变化。
电阻——不易于导通电流(阻抗性的)但对于电流变化反应敏锐的导体。我们还是把高电阻物体比喻成流水,比如一条又窄又浅的溪流:如果改变溪流中的水流量,很快*能发现水位的变化。
因此,我们基本上可以说高电感的物体会造成比较大的相移,这是因为要改变磁场需要较长的时间。而高电阻物体造成的相移则比较小。
相移现象使得基于VLF技术的金属探测器具有了一种称为识别的能力。由于大多数金属具有不同的电导值和电阻值,VLF金属探测器可利用一对称为相位解调器的电子线路测出相移量,并将实测数据同某一种类的金属相移均值进行比较。然后探测器*会以听觉或视觉信号的形式,将目标物可能所处的金属类型范围告知探测者。
很多金属探测器甚至能让您过滤出(识别)超过某一特定相移水平的目标物。通常,您可以设定需要过滤的相移水平,一般的方法是调节一个用来增加或降低阈值的旋钮。VLF探测器还有一种识别功能,称为忽略功能。实际上,忽略功能是一种针对某一特定相移区间的识别滤波器。探测器不仅像普通识别模式那样针对高于设定相移区间的物体发出警示,也会针对低于设定相移区间的物体发出警示。
更高级的探测器甚至支持设定多个忽略区间。例如,可以对探测器进行设置,让它忽略与易拉罐拉环或小钉子的相移区间相当的物体。识别和忽略功能的缺点是,有可能过滤掉很多与“废物”具有相近相移的有价值的东西。但如果您要寻找某一特定类型的目标物,这类功能*会极为有用。

发布时间:15-07-15 18:01分类:技术文章 标签:传感器故障
现代化工过程通常都装有大量的测量传感器,如温度、流量和压力传感器等。一些测量传感器会用于闭环控制,而另外一些传感器只用于过程监测。在正常条件下,大多数传感器得到的测量值是高度相关的。因此,这*为传感器的故障诊断提供了宝贵的解析冗余。这些测量值的相关性主要源于支配过程运行的物理与化学原理,如:质量与能量平衡等。
传感器异常检测
单变量和多变量的统计过程控制技术可用于检测如下的传感器异常:
(1)异常测量值这种情况主要是由于传感器的故障引起的。
图1异常测量值的示意图,·为异常测量值 (2)多个传感器偏离正常的相关条件
在正常条件下,过程的测量值通常表现出较强的相关性。这些测量相关性为我们提供了必要的冗余,可用于故障传感器的检测、辨识与重构。这可以通过比较过程的测量值与基于标称模型的估计值之间的差别来实现。
可以采用统计方法来建立过程的标称模型,如;主元分析方法(principle
component analysis—PCA)以及部分*小二乘(partial least
squares—PLS)算法等。 (3)被监测过程的瞬态变动
所不期望的测量瞬态变动,例如:振荡、或者在批处理过程中的不寻常的趋向性,一般是由于非正常的操作条件引起的。
检测这类异常通常采用的是动态统计模型,或卡尔曼滤波器。出于安全方面的原因,大多数化工过程的反应都比较缓慢。这类瞬态变动可以看成是伪稳态。因而可近似采用稳态的相关分析方法来进行处理。采用一些滤波技术也可以进一步减弱瞬态变动的影响。
采用主元分析进行过程监测与故障检测是近年来才发展起来的。由于数据的相关性,一些主要的分量*可以充分描述全部数据的方差。基于主元分析可以区分如下(4)和(5)两类异常条件。
(4)传感器相关故障
在这种情况下,PCA模型被破坏增加。残余向量的欧氏范数将显著增加。
(5)变动过大 用于描述操作变化的变量超过了正常的范围。 传感器故障
某一故障传感器通常会破坏与其他传感器的正常的相关性。当异常条件被检测到以后,此特性可用于故障传感器的辨识。
只考虑四种类型的传感器故障,即:偏差、彻底失效、漂移、精度下降。图2.2给出了这四种故障的示意图。
图2 a)偏差b)彻底失效c)漂移d)精度下降
主元分析(PCA)以及部分*小二乘(PLS)算法都是多变量统计方法,可用于对含有噪声的和高度相关的测量数据进行分析。采用的是把高维信息投影到低维子空间,并保留主要过程信息的方法。
主元分析(PCA)的要求
一般地说,利用主元分析得到的主元和原始变量之间有如下基本关系:
(1)每个主元都是原始变量的线性组合。 (2)主元的数目小于原始变量的数目。
(3)主元保留了原始变量绝大多数信息。 (4)各主元之间互不相关。
算法的具体步骤
基于主元分析的故障检测算法包括离线建模和实时检测两大部分,该算法的具体步骤如下所示。
1)采集过程正常情况下的的数据并进行标准化处理;
2)求出标准化之后数据的协方差,计算其特征值与特征向量;
3)建立PCA模型,主元个数的求取可由累计方差贡献率(85%以上)算出。然后计算出这些正常数据的统计量SPE的控制限;
4)采集新的样本,使用当前数据的均值和方差并对新数据进行标准化处理;
5)基于已经建立的PCA模型,计算统计量SPE的值,并与3)中得出的控制限做比较,判断故障是否发生。

相关文章

No Comments, Be The First!
近期评论
    功能
    网站地图xml地图