澳门新萄京8522-娱乐手机版游戏网址


《规范》适用于绝缘油介损及体积电阻率测试仪的校准,辐射 提高医用材料的力学性能

要用滤膜称重法直接测量颗粒物的质量浓度,一、环境监测仪器生产及技术现状

防辐射纤维及材料的研制受到各发达,路电源进行核相

发布时间:15-05-08 17:15分类:技术文章 标签:核相
核相,是指在电力系统电气操作中用仪表或其他手段核对两电源或环路相位、相序是否相同。也*是在实际电力的运行中,对相位差的测量。新建、改建、扩建后的变电所和输电线路,以及在线路检修完毕、向用户送电前,都必须进行三相电路核相试验,以确保输电线路相序与用户三相负载所需求的相序一致。
核相是针对二路电源而言的。二路电源需要向同一个用电设备供电时,在投入时,要在并列点进行核相。
若二路电源需要并列倒电时,若不核相,由于安装接线错误,可能出现相序(相位)不一致,引起短路事故,影响正常供电。
若二路电源需要停电倒电时,若不核相,可能由于相序不一致,引起三相设备的非正常运行,如电机的反转。
因此,在第二路电源投入时,一定要与*路电源进行核相。核相方法:
对0.4KV系统,一般用万用表进行核相;
对3-35KV中性点非接地系统,一般用专用高压定相杆进行核相;
对110KV及以上中性点直接接地系统,一般用PT进行核相; 1.为什么要核相?
若相位或相序不同的交流电源并列或合环,将产生很大的电流,巨大的电流会造成发电机或电气设备的损坏,因此需要核相。为了正确的并列,不但要一次相序和相位正确,还要求二次相位和相序正确,否则也会发生非同期并列。
2.怎么用万用表进行核相?
把万用表拨在交流500V挡,一只表笔接*路线路的其中一相,另一只表笔接第二路其中一项等读数稳定后记录下来所对应的电压值读数和对应位置,读数为0V的两项为同相,依次测量6次*可以准确判断,只有同相可以并网。发电机并网也如此。*是万用表的两只表笔一只接*路电源的其中一相,另一只表笔接第二路电源的其中一项,依次测量如果测量的值是0V说明是同相,该两路为同相可以并网,然后再测量其余两相,以此类推直到找到两路的1A-2A,1B-2B,1C-2C,才可以并网。
3.变压器如何核相?
应*用运行的变压器校对两母线上电压互感器的相位,然后用新投入的变压器向一级母线充电,再进行核相,一般使用相位表或电压表,如测得结果为,两同相电压等于零,非同相为线电压,则说明两变压器相序一致。
4.变电所两电源核相的问题
A—-A115VA—-B330VA—-C440VB—-A440VB—-B115VB—-C330VC—-A330VC—-B440VC—-C115V为什么会出现这种情况呢?
校相应该是在高压侧校,你的数值很象是用电压互感器校相时得到的数值,电压互感器有两个端子,要找对才行。还有,你的两台变压器的联结组别、二次侧电压是相同的吗?高压校相简单、可靠,可以自己做一个高压校相器,找一个400V电压表,测得表内阻,得出表正常使用时的电流,再根据串联电阻分压原理使表正常工作电流乘以一个合适的电阻,使其分压,做分压电阻时一定要考虑到用交流电的*大值来算。
5.什么是核相器?
电力系统核对相位使用的一种仪器,可检查额定电压的存在。电力系统核对相位是经常性的工作。传统的定相方法多数采用电压互感器或高压验电器。这些方法前者设备笨重,后者依靠微弱的辉光指示容易出现误判断。核相器使高压定相这项危险性较大的而又必不可少的工作安全可靠,指针显示一目了然,重量只有互感器的1/10-1/20、携带方便。
6.低压柜两段核相时,母联柜需要投入吗?
低压柜两段核相时,母联柜是不能投入的。核相的目的,是保障两段母线的相序相同,相位也相同,电压相等。母联柜投入时相当于并联了。
7.10kv两路供电电源在送电之前能核相吗?怎么核实相序一致。要是不能的话,送电之后怎么核实。
送电前和送电后都要核相,送电前可以看,送电后有核相的仪器。

发布时间:15-06-04 14:39分类:技术文章 标签:溶解氧 1.溶解氧的基础知识
空气中的分子态氧溶解在水中称为溶解氧。水中的溶解氧的含量与空气中氧的分压、水的温度都有密切关系。在自然情况下,空气中的含氧量变动不大,故水温是主要的因素,水温愈低,水中溶解氧的含量愈高。溶解于水中的分子态氧称为溶解氧,通常记作DO,用每升水里氧气的毫克数表示,即mg/L。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。
碘量法测量溶解氧 原理:
水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉指示剂为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。
所用试剂:
1、硫酸锰溶液:称取480g硫酸锰(MnSO4·4H2O)溶于水,用水稀释至1000mL。此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。
2、碱性碘化钾溶液:称取500g氢氧化钠溶解于300—400mL水中;另称取150g碘化钾溶于200mL水中,待氢氧化钠溶液冷却后,将两溶液合并,混匀,用水稀释至1000mL。如有沉淀,则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,避光保存。此溶液酸化后,遇淀粉应不呈蓝色。
3、1+5硫酸溶液。(一份体积的纯水加五份体积纯硫酸)
4、1%(m/V)淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。冷却后,加入0.1g水杨酸或0.4g防腐。
5、0.02500mol/L(1/6K2Cr2O7)重铬酸钾标准溶液:称取于105—110℃烘干2h,并冷却的重铬酸钾1.2258g,溶于水,移入1000mL容量瓶中,用水稀释至标线,摇匀。
6、硫代硫酸钠溶液:称取6.2g硫代硫酸钠(Na2S2O3·5H2O)溶于煮沸放冷的水中,加0.2g碳酸钠,用水稀释至1000mL,贮于棕色瓶中,使用前用0.02500mol/L重铬酸钾标准溶液标定。
7、硫酸,ρ=1.84。 测定步骤:
1、溶解氧的固定:用吸液管插入溶解氧瓶的液面下,加入1mL硫酸锰溶液,2mL碱性碘化钠溶液,盖好瓶塞,颠倒混合数次,静置。一般在取样现场固定。
2、打开瓶塞,立即用吸管插入液面下加入2.0mL硫酸。盖好瓶塞,颠倒混合摇匀,至沉淀物全部溶解,放于暗处静置5min。
3、吸取100.00mL上述溶液于250mL锥形瓶中,用硫代硫酸钠标准溶液滴定至溶液呈淡黄色,加入1mL淀粉溶液,继续滴定至蓝色刚好退去,记录硫代硫酸钠溶液用量。
计算: 溶解氧(O2,mg/L)=M*V*8000/100  
式中:M——硫代硫酸钠标准溶液的浓度(mol/L);
V——滴定消耗硫代硫酸钠标准溶液体积(mL)。 注意事项:
1、当水样中含有亚硝酸盐时会干扰测定,可加入叠氮化钠使水中的亚硝酸盐分解而消除干扰。其加入方法是预*将叠氮化钠加入碱性碘化钾溶液中。
2、如水样中含Fe3+达100—200mg/L时,可加入1mL40%氟化钾溶液消除干扰。
3、如水样中含氧化性物质(如游离氯等),应预*加入相当量的硫代硫酸钠去除。
另:关于水样的测定 1、检测有无氧化或还原物质存在
取50ml待测水(活性污泥沉淀后去上清液)加入0.5ml浓硫酸,少量碘化钾(约0.5g),加淀粉溶液,如果溶液呈蓝色,则有氧化性物质存在。如果保持无色,加入0.2ml碘溶液,震荡,放置30s,如果没成蓝色,则有还原物质。
2、取样
从生物池取出水样后,立刻用虹吸法将污泥抽入1000ml具塞细口瓶中,溢出三分之一体积,立刻用吸管于液面以下加入10ml硫酸铜-氨基磺酸抑制剂,盖好瓶盖,颠倒馄匀。精致,等沉淀下沉后,将上清液吸入2个溶解氧瓶中(瓶内不允许有气泡)。
3、测定叠氮化钠修正法(有亚硝酸盐存在) 样品中有氧化性物质
向一个溶解氧瓶中加入5ml(1+5)硫酸和1g碘化钾(吸管插入液面下),摇匀,此时游离出碘,移液管取100ml到250ml锥形瓶中,以淀粉作指示剂,用硫代硫酸钠滴定至蓝色退去,记下用量V1。
向另外一个溶解氧瓶中(吸管插入液面下)加入1ml硫酸锰溶液,2ml碱性碘化钾,盖好瓶塞(瓶内不允许有气泡),颠倒混合数次,静置。待棕色沉淀物降至瓶内一半时,再颠倒混合一次,待沉淀物下降至瓶底。
打开瓶盖,用吸管插入液面下,加入2ml浓硫酸(吸管插入液面下),盖好瓶盖(瓶内不允许有气泡),点到混合至沉淀物全部溶解,放暗处5分钟。(如果有三价铁存在,*加入1ml40%氟化钾溶液)
移取100ml溶液至250ml锥形瓶中,用硫代硫酸钠滴定至淡黄色,加入淀粉溶液1ml,滴定至蓝色刚好退去,记下用量V2。
计算DO=M*V1*8*1000/100-M*V2*8*1000/100 M —-硫代硫酸钠浓度
所用试剂 硫酸锰溶液
称取120g四水硫酸锰(MnSO4.4H2O),或者96g一水硫酸锰,用水稀释至250ml,如果不澄清,过滤。
碱性碘化钾-叠氮化钠溶液溶解125g氢氧化钠于100ml水中,溶解37.5g碘化钾于50ml水中,溶解2.5g叠氮化钠于水中。三者混合,加水稀释至250ml。
硫酸铜-氨基磺酸抑制剂溶解32g氨基磺酸于475g水中,溶解50g硫酸铜于500ml水中,混合,加入25ml冰乙酸,混匀。
重铬酸钾0.025mol/l移取0.25mol/l重铬酸钾25.00ml至250ml容量瓶中,加水至标线。
1+5硫酸 1%淀粉溶液与cod淀粉配法一致、 硫代硫酸钠溶液
称取3.2g硫代硫酸钠溶解于煮沸冷却的水中,加入0.2g碳酸钠,用水稀释至1000ml,储存于棕色瓶中,使用前用0.025mol/l重铬酸钾标定,方法如下
于250ml碘量瓶中,加入100ml水和1g碘化钾,加入10ml
0.025mol/l重铬酸钾溶液、5ml(1+5)硫酸,盖上塞子,摇匀,暗处静止5min,用硫代硫酸钠滴定至淡黄色,加入1ml淀粉,继续滴定到蓝色刚好褪去,记录用量V
关于溶解氧的常用参数 溶解在水中的氧称为溶解氧(Dissolved
Oxygen,DO),溶解氧以分子状态存在于水中。水中溶解氧量是水质重要指标之一。
水中溶解氧含量受到两种作用的影响:一种是使DO下降的耗氧作用,包括耗氧有机物降解的耗氧,生物呼吸耗氧;另一种是使DO增加的复氧作用,主要有空气中氧的溶解,水生植物的光合作用等。这两种作用的相互消长,使水中溶解氧含量呈现出时空变化。
若以CH2O代表有机物,则有机物氧化分解反应式为: CH2O+O2→CO2+H2O
如果水中有机物含量较多,其耗氧速度超过氧的补给速度,则水中DO量将不断减少,当水体受到有机物的污染时,水中溶解氧量甚至可接近于零,这时有机物在缺氧条件下分解*出现腐败发酵现象,使水质严重恶化。
天然水体中DO的数量,除与水体中的生物数量和有机物的数量有关外,还与水温和水层有关。在正常情况下地表水中溶解氧量为5-10mg/L,在有风浪时,海水中溶解氧可达14
mg/L,在水藻繁生的水体中,由于光合作用使放氧量增加,也可能使水中的氧达到过饱和状态,地下水中一般溶解氧较少,深层水中甚至完全无氧。
地面水体中微生物分解有机物的过程消耗水中的溶解氧的量,称生化需氧量,通常记为BOD,常用单位为毫克/升。一般有机物在作用下,其降解过程可分为两个阶段,*阶段是有机物转化为二氧化碳、氨和水的过程,第二阶段则是氨进一步在亚硝化细菌和硝化细菌的作用下,转化为亚硝酸盐和硝酸盐,即所谓硝化过程。BOD一般指的是*阶段生化反应的耗氧量。微生物分解有机物的速度和程度同温度、时间有关、*适宜的温度是15~30℃,从理论上讲,为了完成有机物的生物氧化需要无限长的时间,但是对于实际应用,可以认为反应可以在20天内完成,称为BOD20,根据实际经验发现,经5天培养后测得的BOD约占总BOD的70~80%,能够代表水中有机物的耗氧量。为使BOD值有可比性,因而采用在20℃条件下,培养五天后测定溶解氧消耗量作为标准方法,称五日生化需氧量,以BOD5表示。BOD反映水体中可被微生物分解的有机物总量,以每升水中消耗溶解氧的毫克数来表示。BOD小于1mg/L表示水体清洁;大于3-4mg/l,表示受到有机物的污染。但BOD的测定时间长;对毒性大的废水因微生物活动受到抑制,而难以准确测定。
水体中能被氧化的物质在规定条件下进行化学氧化过程中所消耗氧化剂的量,以每升水样消耗氧的毫克数表示,通常记为化学需氧量(ChemicalOxygen
Demand,COD)。在COD测定过程中,有机物被氧化成二氧化碳和水。水中各种有机物进行化学氧化反应的难易程度是不同的,因此化学需氧量只表示在规定条件下,水中可被氧化物质的需氧量的总和。当前测定化学需氧量常用的方法有KMnO4和K2CrO7法,前者用于测定较清洁的水样,后者用于污染严重的水样和工业废水。同一水样用上述两种方法测定的结果是不同的,因此在报告化学需氧量的测定结果时要注明测定方法。
COD与BOD比较,COD的测定不受水质条件限制,测定的时间短。但是COD不能区分可被生物氧化的和难以被生物氧化的有机物不能表示出微生物所能氧化的有机物量,而且化学氧化剂不仅不能氧化全部有机物,反而会把某些还原性的无机物也氧化了。所以采用BOD作为有机物污染程度的指标较为合适,在水质条件限制不能做BOD测定时,可用COD代替。水质相对稳定条件下,COD与BOD之间有一定关系:一般重铬酸钾法COD>BOD5>高锰酸钾法COD。
由于BOD测定费时,为实现快速反映有机污染程度的目的,而采用总有机碳(Total
Organic Carbon,TOC)与总需氧量(Total Oxygen
Demand,TOD)测定法。它们都是使用化学燃烧法,前者测定结果以C表示,后者则以O表示需养有机物的含氧。由于测定时耗氧过程不同,而且各种水中有机物成分不同,生化过程差别也较大,所以各种水质之间,TOC或TOD与BOD5不存在固定的相互关系。在水质条件基本相同的条件下,BOD5与TOC或TOD之间有一定相关性。

发布时间:15-05-11 16:43分类:技术文章 标签:防辐射,防辐射材料
随着工农业生产,特别是国防科研、放射医学和原子能工业的迅速发展,各种射线的使用日益广泛。射线的使用给人们带来了方便和实惠,但在某种程度上也给人类带来了一些危害,这引起了人们对防辐射纤维及材料研究的重视。防辐射材料是指能够吸收或消散辐射能,对人体或仪器起保护作用的材料。防辐射纤维及材料的研制受到各发达*的普遍重视,它的研制对国防和民用都有十分重要的意义。
防Xγ射线的材料
X射线和γ射线都是由强光子流组成的电磁波,可间接引起物质电离。它们对生物体的作用基本相同,通过光电效应、康普顿效应、电子对效应与组成机体的各种物质相互作用,转移其能量,产生电子使与之作用的物质电离。X射线和γ射线等对人体的伤害很大。长期接触这些射线会对人体的性腺、乳腺、红骨髓等产生伤害,超过一定剂量还会造成白血病、骨髓瘤等疾病。根据射线的性质及其与物质的作用机理,可选择和制备相应的材料进行防护。防X射线及γ射线的材料通常都是含铅的玻璃、有机玻璃和橡胶等制品。实验表明,几乎所有的塑料和橡胶加入X射线屏蔽物质后均可制成防X射线材料,但防辐射纤维及其织物的研制要困难很多。上世纪80年代初,苏联莫斯科纺织材料研究所*致力于防护纤维和防护服的研究开发,*后在核电站防护服、X射线防护服、屏蔽电磁波防护服等方面取得了重大突破。*初苏联的科技工作者以粘胶纤维织物为对象,研制了X射线防护织物。他们首*进行聚丙烯腈接枝,然后用硫化钠溶液处理接枝共聚材料,*终再用醋酸铅溶液处理被改性的织物,X射线防护物活性随醋酸铅溶液浓度、处理温度提高而增高。这种方法的优点在于铅消耗量低、耐洗涤,使用1~2两层织物即可明显减弱X射线辐射,可用于制做轻便防护服。但工艺较复杂,制取难度大。后来俄罗斯科学院核研究所与伊万诺夫城膜及人造革研究所密切合作,专门设计了适用于核电站消防人员、维修人员和操作值班人员穿着的防辐射服。这种核防护服在组合辐射强度达100BER/h(γ、X射线)和400BER/h(β射线)的条件下,能在20min内保护工作人员免受辐射损伤。这是因为它能有效地吸收辐射能量达200万eV光子射线和2兆eV的β射线,保护工作人员免受辐射、灼伤和放射物沾污皮肤以及吸入气体等危害。其中SZO型防护服是为处理紧急事故而设计的,可以防护射线辐射、高温时的强热曝晒、短时间过热蒸汽和明火的烘烤。这套服装对α射线辐射有完全的保护作用,防2兆eVβ射线辐射的衰减系数达50,能防20万eV的γ射线辐射达2倍衰减值。
日本和奥地利的研究者分别将硫酸钡添加到粘胶纤维中制成的防辐射纤维可用于制作长期接触X光的工作人员的服装,效果良好。防X射线纤维加工成的织物经层压或在织物中填加含有屏蔽剂的粘合剂后热压制成的层压织物,均是防护X射线辐射的良好材料,我国一些机构也对此进行了研究。美国佛罗里达州的一家辐射防护技术公司用辐射防护技术对聚乙烯和聚氯乙烯进行改性研制成功一种称作demron的防辐射织物。它是由一层聚乙烯(PE)和聚氯乙稀(PVC)聚合物夹在两层普通梭织物之间构成。据介绍,该聚合物的基体经某种工艺处理后能产生电子共振作用,使得聚合物基体的电子呈现和重金属相似的结构。这种分子结构会使任何一种辐射均遭受大量电子云作用,从而减慢和吸收核辐射。它不仅能防α射线,还能阻挡β射线和γ射线。这种防辐射织物的防辐射性能跟铅做的衣服一样好,但其重量比铅轻若干倍,它不含铅,无毒。它的用途很广,既可以制成轻便的全身防护服、防辐射帐篷,又可以作为飞机、宇宙飞船用内衬材料等。
目前研制成的新型防X射线纤维主要是用聚丙烯和固体X射线屏蔽剂材料复合制成的。成品纤维的线密度在212dtex以上,纤维的断裂强度可达20~30CNtex左右,断裂伸长率约为25~45%。由这种纤维做成的非织造布对中、低能量的X射线具有较好的屏蔽效果。用于防护服的非织造布的重量在608g/m2以上时,对中、低能量X射线的屏蔽率可达70%以上。齐鲁等自行研制了防X射线纤维。这种纤维是由聚丙烯和固体屏蔽剂复合材料制成的,成品纤维的纤度在212dtex以上。他们研究了断裂强度和伸长,动态力学性能和其无纺布的屏蔽率。结果表明,纤维的力学性能可满足纺织加工的要求,随着纤维拉伸倍数的提高,纤维的复模量提高,但超过5倍拉伸时又略有下降。该纤维对中、低能量的X-射线有较高的屏蔽率。还分析研究了屏蔽剂含量与新型防X射线纤维力学性能及形态结构的关系。结果发现,随着屏蔽剂含量的增加,拉伸后的纤维强度下降,伸长降低。经拉伸后防X射线纤维的截面形态结构变成紧密状态,初生纤维中的微裂纹、空洞等结构缺陷基本消除,可是当屏蔽剂含量过高时,在纤维中仍存有部分结构缺陷。屏蔽剂含量对防X射线纤维复模量的影响如图1所示。从图中看出,随屏蔽剂含量的增加,纤维复模量开始升高。当含量超过50%时,[E]值又逐渐降低。这主要是因为纤维拉伸后,当屏蔽剂含量较低时,纤维结构紧密,屏蔽剂是刚性填充剂,使[E]值上升。当屏蔽剂含量较高时,纤维中仍含有部分结构缺陷。另外在拉伸过程中,屏蔽剂必然与PP大分子产生摩擦,使少量PP大分子断裂。含量越高,这种摩擦越剧烈,使[E]值又降低。
近年来人们从保护环境的角度出发,提出了开发替代铅的辐射屏蔽材料的要求。东京都立产业技术研究所与橡胶、塑料生产厂商合作,共同开发出了在氯丁橡胶里混入约10%的金属粉而形成的无铅高密度橡胶辐射屏蔽材料。他们通过加入钨、铋、氧化铋等三种添加料而获得高密度橡胶,该屏蔽材料不含铅、重量较轻,经测试确认其屏蔽辐射的效果优于铅材料。与含铅橡胶相比,屏蔽70000eV能量的含钨橡胶显得更薄、更轻;屏蔽100000eV以上能量的含铋橡胶材料也能够做得更轻。由于该辐射屏蔽材料的可加工性优良,因此可加工成装放射性药品的小瓶、注射筒的屏蔽材料,检测核设施时使用的屏蔽垫及检查手提物品用的X射线装置的屏蔽材料等。防X射线辐射材料中很重要的一类是防X、γ射线的有机玻璃。航空、核能、医疗、显像管等应用领域要求使用透明的防辐射材料。各国均在试图寻找一种能满足工业应用的有机透明防辐射材料。日、美、德等*自上世纪60年代开始研究防辐射有机玻璃的制备技术,并且申请了多项*。日本曾用甲基丙烯酸铅与乙烯基酯共聚的方法制取防X、γ射线透明材料。前苏联和我国等也曾进行甲基丙烯酸三烷基锡及其共聚物的研究。后来进行的防X、γ射线有机玻璃研究大多由甲基丙烯酸铅与甲基丙烯酸甲酷和苯乙烯等共聚而成。国内一些化工厂在这方面进行了研究。他们制备了铅含量为1312~66%的5mm厚的含铅有机玻璃板材。研究发现,随着铅含量的增加,防辐射性能提高,但铅含量达到66%时力学性能明显降低。他们研究还发现苯乙烯用量的变化对板材性能影响不大,铅当量无明显变化,但能提高板材的防辐射稳定性,但超过30%时聚合速度明显降低。在本体聚合过程中加入有机羧酸铅化合物对有机玻璃的透光率、材料力学性能、吸收射线能力的影响,并测定了合成有机含铅玻璃材料对放射性元素镅241、铯137、钴60的防辐射能力。他们通过溶剂法,重结晶法合成了纯度较高,适合本体聚合的有机铅化合物;制备了透光率大于80%,有一定力学性能的防辐射有机材料。实验证明,所合成的聚合材料对中、低能量γ射线具有明显的防护作用。在透明防辐射材料领域,有机铅玻璃得到了广泛的研究和应用。但到目前为止,有机铅玻璃仍存在着表面硬度低、抗划痕能力差、表面易起毛等缺点。

相关文章

No Comments, Be The First!
近期评论
    功能
    网站地图xml地图